87 research outputs found

    Optimisation of stochastic networks with blocking: a functional-form approach

    Full text link
    This paper introduces a class of stochastic networks with blocking, motivated by applications arising in cellular network planning, mobile cloud computing, and spare parts supply chains. Blocking results in lost revenue due to customers or jobs being permanently removed from the system. We are interested in striking a balance between mitigating blocking by increasing service capacity, and maintaining low costs for service capacity. This problem is further complicated by the stochastic nature of the system. Owing to the complexity of the system there are no analytical results available that formulate and solve the relevant optimization problem in closed form. Traditional simulation-based methods may work well for small instances, but the associated computational costs are prohibitive for networks of realistic size. We propose a hybrid functional-form based approach for finding the optimal resource allocation, combining the speed of an analytical approach with the accuracy of simulation-based optimisation. The key insight is to replace the computationally expensive gradient estimation in simulation optimisation with a closed-form analytical approximation that is calibrated using a single simulation run. We develop two implementations of this approach and conduct extensive computational experiments on complex examples to show that it is capable of substantially improving system performance. We also provide evidence that our approach has substantially lower computational costs compared to stochastic approximation

    On Optimal Weighted-Delay Scheduling in Input-Queued Switches

    Full text link
    Motivated by relatively few delay-optimal scheduling results, in comparison to results on throughput optimality, we investigate an input-queued switch scheduling problem in which the objective is to minimize a linear function of the queue-length vector. Theoretical properties of variants of the well-known MaxWeight scheduling algorithm are established within this context, which includes showing that these algorithms exhibit optimal heavy-traffic queue-length scaling. For the case of 2×22 \times 2 input-queued switches, we derive an optimal scheduling policy and establish its theoretical properties, demonstrating fundamental differences with the variants of MaxWeight scheduling. Our theoretical results are expected to be of interest more broadly than input-queued switches. Computational experiments demonstrate and quantify the benefits of our optimal scheduling policy

    Stable iterative refinement algorithms for solving linear systems

    Full text link
    Iterative refinement (IR) is a popular scheme for solving a linear system of equations based on gradually improving the accuracy of an initial approximation. Originally developed to improve upon the accuracy of Gaussian elimination, interest in IR has been revived because of its suitability for execution on fast low-precision hardware such as analog devices and graphics processing units. IR generally converges when the error associated with the solution method is small, but is known to diverge when this error is large. We propose and analyze a novel enhancement to the IR algorithm by adding a line search optimization step that guarantees the algorithm will not diverge. Numerical experiments verify our theoretical results and illustrate the effectiveness of our proposed scheme.Comment: 5 pages, 6 figure
    • …
    corecore